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Abstract 

It has been shown that a thm-point second difluence estimator is neculy optimal for estimating 
fiequenq drifr in muny common atomic o s c i ~ o r s .  We derive a fonnul~r fir the uncertaintg of this 
estimate as a function of the integraiion fime and of the Allan variance associafed with this integration 
time. 

Theory 

The threepoint drift estimator is a useful tool for estimating the frequency drift in many atomic 
oscillators [l]. In this paper we derive a formula for the uncertainty of the three-point drift estimate; 
as we shall demonstrate, there is a simple relationship between the uncertainty of the drift estimate 
and the Allan variance of the residuals which remain after the estimated drift is removed. We explain 
how to apply the uncertainty formula and then w e  use it to assess the uncertainty of the drift estimate 
in several examples. 

Let us begin by discussing the threepoint drift estimator. To define it, let x(t) be a time series of 
time difference measurements between two oscillators drifting in frequency relative to each other. An 
optimal estimator, 6,  of drift uses the first, middle, and last time-difference points. We estimate the 
average frequency over the first and second halves of the data, subtract the first frequency from the 
second, and then diyide by T ,  the time elapsed between the first and middle or middle and last data 
points. This yields: 

(1) 

D = - (  1 Z(27) - X ( T )  - 
T I- 

That is, we estimate drift as 1/r2 times the second difference of the time series z, where we take the 
second difference over as large an interval as possible. 
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Let us separate the time offset z( t )  into the part due to the frequency drift D and the part due to 
everything else (initial offsets, stochastic noise, systematic..): 

D 
2 

z(t) = z'(t)-t2 . 

We now will show that the uncertainty of the drift estimate, b, is functionally related to the Allan 
variance of the z'(t) time series. 

If we substitute (2) into (1) we obtain 

Rearrangement yields: 

The expected variance of our drift estimate, b, around the true drift D will thus be 

where ( ) is the expectation operator. The square root of this quantity is the expected deviation of b 
around the true value. 

If we compute an Allan variance of x' for the integration time T we obtain [2,3] 

1 
Og(T)2  = -((X'(2T) 2T2 - 2 d ( T )  + Z'(o))2) . 

Substitution of (6 )  into (5 )  yields our result, the relationship between the expected deviation in the 
drift estimator, b, and the Allan variance o f d ,  the drift-removed data: 

where oyl(r) is the Allan variance of the x' data, and y' refers to the frequency data derived from 
2'. Thus we see that the uncertainty in our drift estimate is a function of the Allan variance of the 
drift-removed data. 

Application of Equation 7 

The application of (7) requires a bit of finesse. First of all, the alert reader has probably noticed 
that, since we don't know the value of D, the true drift, we cannot obtain the time series x'(t). To 
circumvent this problem, we obtain an approximation of z'(t) by removing the estimated drift from 
the z(t) series. We then compute the Allan variances for the approximate z'(t) series. However, it is at 
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this point that we encounter another problem: It is generally true that if you 1) use a second-difference 
estimator (such as the three-point estimator) to estimate drift, 2) remove this estimated drift from the 
time series, and then 3 )  compute the Allan variances for the residual time series, the Allan variances 
obtained for large integration times (such as T = 1/2 the data length) will be biased low, i.e. the 
Allan variance will not be an accurate measure of the frequency variability at large integration times. 
In fact, if we’ were to take a data set with constant drift, compute b).using (I), remove bt2/Z from 

data point, and then compute g d ( ~ )  for this same T, we would obtain exactly zero. 

We need to have o,,~(T) for = 1/2 the data length in order to use (7). Yet we know that after 
removing fi from x ( t ) ,  we are going to get the incorrect value of 0 for 0,12(7) for T = 1/2 the data 
length. However, while c;(T) is incorrectly low for large r ,  it does accurately represent the frequency 
variability for smaller T .  Furthermore, the noise processes of atomic oscillators are such that, for a 
given range of integration times T ,  it is usually the case that o$(T) = k P ,  where k is a constant and 
n is an integer ranging from 1 to -2. The result of this power-law behavior of u ~ ( T )  is that log-log 
plots of o ~ ( T )  versus T exhibit linear behavior. This can be seen in Figure 1. Therefore, in order to 
obtain o$(T) for T = 1/2 the data length, we look at the log-log plot of o ~ ( T ) )  versus T and discard 
the incorrectly-low values of u ~ ( T )  which occuf at large T (For example, in Figure 1, we would discard 
the point for which log T (seconds) M 7. In Figure 3 we would discard the point for which log T 

(seconds) M 6.75). Then, we use the u ~ ) T )  points which correspond to the largest remaining T values 
to determine k and n (i.e., we determine the equation of the line on the log-log plot formed by the 
remaining valid data points). Then, knowing k and n, we use the equation c$(T) = k m  to determine 
the value of u$(T) at T = 1/2 the data length. This value is what we need to apply (7). 

For cesium beam and rubidium gas-cell oscillators, the dominant noise types at large integration 
times are flicker frequency modulation and random walk frequehcy modulation (FLFM and RWFM, 
respectively). FLFM corresponds to an n d u e  of 0 and RWFM corresponds to an n value of +l. 
For very large T ,  RWFM generally dominates. Therefore, if the last (i.e. largest T )  valid linear trend 
that we see on the log-log plot is consistent with a model of RWFM, we may use this slope with a 
measure of confidence to estimate the value of o$(T) at T = 1/2 the data length. I€, however, the last 
linear trend corresponds to FLFM, we need to ask ourselves whether the FLFM noise type continues 
out to r = 1/2 the data length, or whether RWFM is the correct noise type for T = 1/2 the data 
length. The assumption of RWFM as the noise type always leads to a larger computed value of c;(T) 
than the assumption of FLFM. Thus, simply assuming that RWFM dominates at r = 1/2 the data 
length yields a conservative estimate. The uncertainty in the Allan variance estimate will limit the 
accuracy of our uncertainty estimate. Nevertheless, we can make conservative estimates of uncertainty 
and obtain meaningful results. 

In summary, to use (7) to estimate the uncertainty of we take the following steps: 

1. Compute using the second difference estimator (3), where in that equation, T = T-, the time 
interval for one-half the data length. Remove h 2 / 2  from each of the time-difference data points 
4 t ) .  

2. Compute the Allan deviations c ~ ( T ) ,  for T = nT0, where n is an integer multiple of the sampling 
interval TO. Make a log-log plot of o ~ ( T )  versus T.  

3. Look for abnormally low values of c ~ ( T )  at large values of T.  Discard them. 

4. Determine the parameters k and n in the equation c$(T) = kTn for the last valid linear trend 
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on the log-log plot. Then use this equation to compute CT$(T) for T-. Remember to con.$der 
the possibility that the noise type might change past the last valid C T ~ ~ ( T )  value on the log-log 
plot (i.e., the noise type might change from FLFM to RWFM). 

5. Substitute this value of O;,(T) into (7). Solve (7) for the variance of B. The square root is the 
expected deviation. 

Examples 

As examples we use atomic standards aboard GPS satellites studied from July 1, 1991, to September 
15, 1992, a period of 443 d. Satellites are referred to by their pseudo-random code number (PRN), 
the number by which users identify satellites , or by their satellite vehicle number (SVN), the number 
used by the GPS control segment. Clocks on the GPS satellites are measured at NIST against the 
AT1 time scale. For clocks which ran for this entire period, drift could be estimated using a second 
difference with ~=221.5 d. Not all clocks analyzed were on line for this entire period, in which case 
shorter T values were found. We found an assortment of dominant noise types at various integration 
times, with FLFM, and RWFM dominating at times equal to one-half the data length. Table I gives 
our example results and indicates associated figure numbers. 

P W # 2  and -re 1 illustrate the dirsculty in determining noise type. Looking at figure 1, we see 
that, while FLFM, TO, is the probable slope for the last valid UJT) values, the uncertainty allows for 
the possibility of a T ~ / ~  slope, indicating RWFM. Furthermore, RWFM is usually the dominant noise 
process for cesium frequency standards at integration times such as 221.5 d [6]. We compute a more 
conservative value in the second line of the table. Similarly for PRN#25 we have assumed FLFM in 
its first line. If we assume RWFM we see we find only a small change. 

Another consideration is that equation (7) applies to the Allan variance, not the modified Allan 
variance. In figures 1 and 5 we used the modified Allan variance. We can account for this as follows. 
Asymptotically, if we define 

then %, = 0.91 for RWFM and R, = 0.82 for FLFM (51. These corrections have been included in 
the table. 

Conclusions 

We have derived a relationship that allows us to estimate the uncertainty of the three-point estimator 
of frequency drift. It does not give a lot of precision but it is adequate for determining a confidence 
level. With the procedure outlined, we can determine an upper bound on the uncertainty of the 
estimate of frequency drift. 
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T a b l e  1 2 

PRN# Dates T,, Dominant a;47) @ 4 s )  Estimated Drift & IJ Figure 
(Type) days NoiseType parts in l(T’’/d Nos. 

2 (Cs) 1Ju191 - 15Sep92 221.5 FLFM 0.4 - 1 0 - l ~  -2.7 A0.3 1 

2 (Cs) 1Ju191 - 1SSep92 221.5 RWFM 0.2-10-” @ IO6 -2.7 f0.6 1 

3 (Rb) 1Ju191 - 15Sep92 221.5 RWFM 2.0.10-’3 @ lo6 -98 *6 2 

12 (Rb) 8Apr - 1SSep92 80.5 RWFM 2.5-10” @ lo6 -130 + l o  3 

25 (Rb) 30Jun - 1SSep92 39 FLFM 0.7.1013 -183 f 3  S 

25 (Rb) 30Jun - 15Sep92 39 RWFM 0.6.1043 a 106 -183 f4 5 

PRN 2 (SVN 13) - NIST<ATl>  
1 J u l y  ‘91 - 15 Sep ‘92 

-11 

- 12 
A 

J 

- 14 

- 15 

LOG TAU (Seconds)  

Figure 1: 
NIST against the AT1 time scale from July 1, 1991 to September 15,  1992. 

The modified Allan variance of the Cs clock on PRNb2 as measured at 
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Figure 2: 
against the AT1 time scale from July 1, 1991 to September 15, 1992. 

The Allan variance of the Cs clock on PRN#3 as measured at NIST 

PRN 12 (SVN 1s) Rb Clock - N ; S T < A T l )  
8 April 92 - 15 Sep 92 ' 
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Figure 3: The Allan variance of the Rb clock on P E W 1 2  as measured at NIST 
against the AT1 time scale from April 8, I991 to September 15, 1992. 
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Figure 4 :  
against the AT1 time scale from April 8, 1991 to September 15, 1992. 

The Allan variance of the Cs.clock on PRNi"19 as measured at NIST 

pi7N 25 <SV$ 25) - NIST(AT1) 
30 June 32 - 15 Sep *92 

LOG TAU <Seconds) 

Figure 5: 
against the AT1 time scale from April 8, 1991 to September 15, 1992. 

The Allan variance of the Rb clock on PRN#25 as measured at NIST 
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